

LABORATOIRE PLASMA ET CONVERSION D'ÉNERGIE

Les modes électriques apport de la modélisation pour l'interprétation des mesures

Christina Villeneuve-Faure

Motivations

Pourquoi des mesures électriques locales quantitatives?

Production, transport et stockage d'énergie

Câbles HVDC⁴

Nano-capteur biologique

SURFACE

RF/Power STT-MRAM Transistor Réduction d'échelle et architecture 3D en nanoelectronique⁴

Novel Functional Materials

Quantum Dot

Spin-Transfer

Torque

 \rightarrow Caractériser les propriétés électriques à l'échelle locale \rightarrow Quantification : comparaison avec propriétés

Phase-Transition

¹ M.A. Zamzami et al., Bioelectrochemistry 143, 107982 (2022)

Nanoelectronic Devices

TFT

- ² J. Queen et al, iScience 23, 101745 (2020)
- ³ H. Movla et al. Sc. Report 13, 2031 (2023)
- ⁴ L. Zhang et al., book chapter (doi.org/10.1007/978-981-15-9731-2 2)
- ⁵ S. Salahuddin et al., Nature electronics 1, 442 (2018)

Resistive

Switching

Maplace Sommaire

1. Courant, conductivité et mobilité des charges

- A. SSRM, résiscope, C-AFM, et TUNA
- B. Détermination propriétés physiques et limitations

2. Permittivité diélectrique et impédance

- A. Introduction
- B. EFM et modes dérivées
- C. sMIM

3. Charges électriques surface/volume

- A. Le KPFM dans tous ses états
- B. Cartographie de potentiel réel?
- C. Détermination de densité de charges

4. Mesures en dynamique

1.1. Principe .aplace

Conductive AFM (C-AFM) : courant

- Mesures en contact ou en mode Peak Force
 - Spectroscopie : I=f(V_{DC})
 - Cartographie de I (pour V_{DC} fixe) → chemin de conduction
- Résolution spatiale ~ *rayon de la pointe AFM*
- Sensibilité : quelques fA (TUNA) \rightarrow quelques μ A (C-AFM)
 - Isolant / semi-conducteurs

Spreading resistance (SSRM) : résistance

- Mesures en contact ou en mode Peak Force
 - Spectroscopie : R=f(V_{DC})
 - Cartographie de R (pour V_{DC} fixe)
- Résolution spatiale ~ rayon de la pointe AFM
- Sensibilité : $1\Omega \rightarrow 10^{19} \Omega$
 - Semi-conducteurs / métaux

1.2. Courant et résistance : mesures

Lecture de données sur des mémoires \rightarrow conduction dans les métaux

Cartographie de courant @ 6.8mV $sur BL (Fc = 3\mu N)$

Visualisation

facile des

états

Visualisation difficile des états mémoires \rightarrow Résistance @ 0.1V \rightarrow Fc = 3.7 μ N

100 10¹² Ω 0 µm b. Resistance

10¹⁴Ω

 $R("0") = 15.54 \ k\Omega \ (\sigma = 0.49 \ k\Omega)$ $R("1") = 18,61 \, k\Omega \, (\sigma = 0.46 \, k\Omega)$

5 L. Dumas et al. Microelectronic Reliablity 150, 115102 (2023)

Laplace 1.2. Courant et résistance : mesures

Conductive AFM (C-AFM) : diélectrique

Cartographie de courant SiO₂ (1.5 nm)

Résolution spatiale < rayon sonde (Rc $\approx 25 \text{ nm} - PtIr$)

I-V pour différence épaisseur SiO₂ et différents revêtement de sonde

U. Celano et al., JAP 117, 214305 (2015) W. Frammelsberger et al., ASS 253, 3615 (2007)

Spreading resistance (SSRM) : semi-conducteur

<u>Résistance</u>: $R = R_C + R_{SR} + R_M$ R_C : résistance contact R_{SR} : spreading resistance R_M : résistance matériaux

Force de contact importante (qques µN)

Cartographie de la résistance d'un empilement

R. Coq Germanicus et al., NanoExpress 2, 010037 (2021)

Aplace 1.3. Du courant à la résistivité/mobilité

Load Force (nN)

W. Frammelsberger et al., ASS 253, 3615 (2007)

Isolant – Films « épais » (> 10nm)

- Surface de collection
- Champ divergeant

F. Mortreuil et al., Nanotechnology 32, 065706 (2021)

Laplace 1.3. Du courant à la résistivité/mobilité

Semi-conducteur - organique Lois décrivant le transport de charges Mobilité dans les semiconducteurs organiques : Loi de Mott-Gurnet (SCLC)

 $J = \frac{8}{9} \varepsilon_r \varepsilon_0 \mu \frac{U^2}{L^3}$

- Densité de courant J = I/S
 - Surface de collection S ?
 - Contact & divergence de J
- Champ électrique E =U/L \rightarrow divergeant
- Permittivité $\varepsilon_r \rightarrow$ inconnue si matériau hétérogène

→ Impossible d'utiliser les lois classiques de transport → erreur mobilité
 → Nouvelles approches adaptées à la configuration pointe - plan

_aplace 1.3. Du courant à la résistivité/mobilité

185 nm

P3HT

U (V)

Loi de Mott-Gurnet corrigée

$$J = \alpha \varepsilon_r \varepsilon_0 \mu \frac{U^2}{L^3} \, \delta \left(\frac{L}{d}\right)^{1}$$

- α : préfacteur (calcul numérique \neq 8/9)
- δ : facteur empirique (offset entre C-AFM et device)
- **d** : surface de collection du courant (estimation)
- **1**. **6** : coefficient correcteur pour la dépendance J-L
- + Transposable à d'autres polymères (PFB et MDMO-PPV)
- Signification physique des facteurs correctifs
- Estimation de la surface de collection

O. Reid et al., NanoLetter 8, 1602 (2008)

Méthode Numérique

3 paramètres pour le contact:

- Rayon de la point r_{tip}
- Rayon du contact $r_c \rightarrow$ estimation model de Hertz
- Rayon de la zone où se produit le SCLC : r_a
- Prise en compte du la composante radiale du champ électrique
- Pour large r_a et faible indentation (meilleur résolution spatiale) : $J = \frac{3\pi}{8} \varepsilon_r \varepsilon_0 \mu \frac{r_c^2}{r_{tip}^2 r_a} V^2$
- + Valeur de mobilité conforme à la configuration « devices »
- Estimation de r_a difficile
- Difficilement applicable aux inorganiques

Laplace 1.4. Courant, conductivité, mobilité

Conclusions et perspectives

- C-AFM et SSRM :
 - imagerie de courant / résistance : chemin de conduction)
 - Spectroscopie : propriétés électriques (résistivité, mobilité,...)
- <u>Métaux</u>: extraction résistance (SSRM) \rightarrow OK
- <u>Semi-conducteur</u>:
 - SSRM : Mesure de résistance OK \rightarrow extraction de la résistivité??
 - C-AFM : mesure de courant OK \rightarrow extraction mobilité/résistivité
 - Divergence du champ électrique \rightarrow modification nécessaire des lois classiques
 - Organique : approche empirique / numérique. Estimation de la surface de contact
 - Inorganique : estimation de la surface de contact???
- <u>Isolant</u> : même problématique que les semi-conducteurs
 - Tout reste à faire sur les isolants inorganiques
 - Surface de contact
 - Modélisation du transport
 - ...

Laplace 2.1. Mesure d'impédance par AFM

- Scanning Capacitance Microscopy (SCM) : $dC/dV \rightarrow dopant$
- Electrostatic Force Microscopy
 (EFM): décalage phase/fréquence
- Kelvin Probe Force Microscopy
 (KPFM) : potentiel surface
 - → Pas de mesure directe (modélisation)

GaAs dopé (cross-section)³

TOPOGRAHY

PHASE - LIA1 ((g1)

Impédance

- Scanning Microwave Impedance
 Microscopy (sMIM) : sMIM-R et
 sMIM-C
- Scanning Microwave Microscopy + VNA

¹ R. Coq Germanicus et al., NanoExpress 2, 010037 (2021)
 ² J. Heo et al., MSE B 124-145, 301 (2004)
 ³ K. Kadja et al., Adv. Mat. Int. 11, 2300503 (2024)
 ⁴ K. Lai et al. Rev. Sci. Instrum. 79, 063703 (2008)

Laplace 2.2.a. Permittivité relative par EFM - principe

Xaplace 2.2.a. Permittivité relative par EFM - principe

C. Riedel et al., Ultramicroscopy 110, 634 (2010)

Laplace 2.2.a. Permittivité relative par EFM - principe

Force électrostatique F_e avec $V_e(\omega_e) = V_{DC} + V_e cos(\omega_e t)$:

- Statique:
$$F_0 = \frac{1}{2} \frac{\partial C}{\partial z} \left((V_{DC} + V_S)^2 + V_e^2 \right)$$

- Dynamique (
$$\omega_e$$
): $F_{\omega e} = \frac{\partial C}{\partial z} (V_{DC} + V_S) V_e$

- Dynamique (2
$$\omega_{\rm e}$$
): $F_{2\omega e} = \frac{1}{4} \frac{\partial C}{\partial z} V_e^2$

Avantage: pas de contribution du potentiel de surface V_S Condition : $\omega_e < \omega$

Laplace 2.2.a. Permittivité relative par EFM - principe

Principe de l'EFM AC en "single pass"

La variation de $\omega_e \rightarrow$ spectroscopie Détermination de la capacité réelle et imaginaire

$$C'_{Re} \propto \left| \frac{\partial C}{\partial z} \right| \cos(\Psi_e) \propto kA_{2\omega e} \cos(\Psi_{2\omega e})$$
$$C'_{Im} \propto \left| \frac{\partial C}{\partial z} \right| \sin(\Psi_e) \propto kA_{2\omega e} \sin(\Psi_{2\omega e})$$

Aplace 2.2.b. Permittivité relative EFM - quantification

Modèle de Hudlet modifié

$$F_{tip-apex} = \pi \varepsilon_0 R V^2 \\ \times \left[\frac{R(1 - \sin \theta_0)}{\left(z + \frac{h}{\varepsilon_r}\right) \left[z + \frac{h}{\varepsilon_r} + R(1 - \sin \theta_0)\right]} \right]$$

Dielectrique : épaisseur h / permittivité ε_r

Bacterie E.Coli : (A) Topographie, (B) EFM dC/dz et (c) ε_r . Mesure en EFM 2 ω

- Beaucoup d'autres modèles
- Avantages :
 - rapidité
 - prise en compte facile des variations d'épaisseur
 - Inconvénients:
 - Non prise en compte du cône et du cantilever
 - Détermination des paramètres de la pointe \rightarrow calibration métal
 - Limité au matériaux homogènes → permittivité inclusions?

X Laplace 2.2.b. Permittivité relative EFM - quantification

Méthode des charges images

a Topographie

- EFM (V_{DC} = 5V) sur un film composite PVAc/PS (25/75) @ 70°C
- Permittivité
- PVAc : 8.2 ±1.0
- PS: 2.6 ±0.3

- Avantages :
 - Prise en compte cône
- Inconvénients:
 - détermination des paramètres de la pointe
 - Modélisation d'un matériau hétérogène difficile

- Trouver la distribution de charges ponctuelles reproduisant le potentiel appliqué + conditions limites
- Calcul du champ électrique
- Calcul de la force électrostatique

X Laplace 2.2.b. Permittivité relative EFM - quantification

-

C. Villeneuve-Faure et al. Proc IEEE NMDC 2018

Aplace 2.2.b. Permittivité relative EFM - quantification

2.3. Permittivité diélectrique -sMIM

aplace 2.4. Conclusion et perspectives

Mesures de permittivité

- Grande variété de méthode disponible
- Détermination de la permittivité \rightarrow modélisation nécessaire
 - Modèle numérique.
 - + Prise en compte facile des différences de hauteurs
 - Mesure quantitative difficile : Non prise en compte du cône
 - et du cantilever
 - Méthode des charges images.
 - + Prise en compte du cône

- Difficile de prendre en compte différence de hauteur / hétérogénéités du matériaux

- Méthode par éléments finis.
 - + Mesure quantitative
 - + Prise en compte de l'hétérogénéité des échantillons
 - Difficile de prendre en compte les différences d'épaisseur

Nécessité de modéliser la configuration réelle

Force électrostatique en fonction de la distance D – Modélisation éléments finis

- Meilleur modèle : tétrahedre + cantilever
- dC/dV : modèle cône suffit

X Laplace 3.1. Mesures de charges

- Décalage en fréquence ou en phase → densité de charge
- Le signal lu dépend de la tension
 V_{DC} → signe des charges non
 « évident »

- Modification du potentiel de surface→ densité de charge
- Signe du potentiel de surface →
 signe des charges

3.2. Principe du KPFM – mode lift

Modulation d'amplitude (AM-KPFM)

Annulation de la force électrostatique par $V_{\mbox{\tiny DC}}$

$$F(\omega) = -\frac{dC}{dz} \cdot (\Delta \Phi - V_{DC}) \cdot V_{AC} \sin(\omega t)$$

Modulation de fréquence (AM-KPFM) Annulation du gradient de force électrostatique

$$\frac{dF(\omega)}{dz} = -\frac{d^2C}{dz^2} \cdot (\Delta \Phi - V_{DC}) \cdot V_{AC} \sin(\omega t)$$

Laplace 3.3. Potentiel de surface : mesuré vs réel

Capacités parasites

Schématisation des interactions pointes / surface¹

Effet de la hauteur de lift

Topographie et potentiel de surface en fonction du lift¹

- Amélioration résolution spatial
 - Diminution du lift
 - FM-KPFM
- Amélioration rapport signal
 / bruit : AM-KPFM

Effet du mode

Profil de potentiel de surface entre KCl et Au²

Comment connaitre le potentiel de surface réel?

1 H.O. Jacobs et al., JAP84, 1169 (1998) ² U. Zerweck et al., PRB 71, 125424 (2005) 24

3.3. Potentiel de surface : mesuré vs réel Méthode de déconvolution Point Spreading Function \rightarrow fonction de transfert de la mesure KPFM¹ (a) (b) FM x 10 Application à l'étude des charges injectées localement (résultats non publiés) Potentiel « réel » AM Injection 1min @ 20V - SiON 50nm Mesure en FM-KFM 2.0 2.0 **AM-KFM** Déconvolution du FM-KFM 1.6 potentiel en AM-KPFM AM-KFM deconvolué - 1.5 -50 y [nm Potentiel (V) 1.2 - 1.0 C) 60 0.8 AM [uu]WHMJ JSd 0.8 - 0.5 0.6 0.4 0.4 0.4 FM 0.8 0.0 0.2 Position (µm) 10 15 25 0.6 20 30 20 80 100 60 Tip-sample distance[nm] Tip-sample distance[nm]

¹ G. Cohen et al., Nanotechnol. 24, 295702 (2013)

3.4. Modélisation du KPFM

force (nN)

Laplace 3.4. Modélisation du KPFM

- Détermination des profils de charges injectées
- Méthode dépend de l'épaisseur
 - Film mince (<1µm): FEM
 - Film épais (> 1µm): SDM
- Applicable à l'étude des charges d'interface

ightarrow poster Antonella Hugo

KPFM : potentiel de surface réel

<u>Détermination de la densité de charges</u>
Modèle de la dérivée seconde (SDM)

$$\rho(x) = -\varepsilon_0 \varepsilon_r \frac{d^2 V_s}{dx^2}$$

¹ C. Villeneuve-Faure et al, Nanotechnology 28, 505701 (2017)

Laplace 3.5. Mesure de charges par KPFM

Mesures de charges 1D – Charges de surface

- Modélisation de la force électrostatique : éléments finis ou analytique

Mesures de charges 2D – Electrodes latérales

Deux approches

- Méthode de la dérivée seconde : film épais (> 1µm)
- Méthode par éléments finis : film mince (< 1μm)
- + Mesure en FM-KPFM : plus proche du potentiel de surface réel

Mesures de charges 3D – Injection charges localisée en volume

- Modélisation par éléments finis nécessaires pour calcul de la force électrostatique
- Détermination de la densité de charges possible si profondeur de pénétration connue
 - Profondeur de pénétration inconnue en général
 - Nécessite de nouvelles approches
 - Nouvelle méthode de mesures?
 - Combiner plusieurs mesures? KPFM + EFDC
 - Autres?

Laplace 4.1. Mesures en dynamique - charges

Identification des mécanismes de dissipation des charges dans SiOxNy

Augmentation de la concentration en Si

¹ C. Villeneuve-Faure et al, Proc. Int. Conf. Dielec. (ICD 2013) ² C. Villeneuve-Faure et al, JAP 113, 204102 (2013)

Applace 4.1. Mesures en dynamique – sous illumination

Mesure sous illumination - statique

Evolution du potential de surface de PFB:F8BT en function de la longueur d'onde d'illumination

Mesure sous illumination - dynamique

Cartographie de courant avec/sans illumination @ 3V

Charges piégées

C. Villeneuve-Faure et al., JAP 117, 055501 (2015)

- Adhésion, formation des biofilms, matrices extracellulaires
- Méthodes et techniques innovantes de caractérisation des biofilms
- Conception, fabrication, caractérisation de surfaces/matériaux (antimicrobiens, anti-adhésifs, pour la dépollution et la bioproduction)
- Biophysique des biofilms, Ecoulement et phénomènes de transport, Microfluidique

UNIVERSITÉ PAUL SABATIER Bât. 3R3, 118 route de Narbonne 31062 Toulouse Cedex 9

http://www.laplace.univ-tlse.fr