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stiffness k

AFM: measurement of cantilever’s deflexion Dz

zkF D

interaction force F between probe and sample

AFM force measurements requires

calibration of cantilever’s stiffness



1. Theoretical stiffness from Euler Bernoulli model

3. Calibrations based on modes of oscillation 

2. Calibration using static deformations

 theoretical stiffness k0 of the cantilever

 simple harmonic oscillator method

 Cleveland’s added mass method

 Hydrodynamic Sader method

 Thermal noise calibration

 cantilever against reference cantilever method

Introduction

Conclusion

 from k0 to k : corrections due to position of the probe
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Euler-Bernoulli model for a rectangular cantilever

 long beam: L >> T, H 

 small deformations : L << Dz = z(L)

 constant Young modulus E

 constant rectangular section

where mc is the cantilever mass 

)(
12 4

43

2

2

xf
x

zWH
E

t

z

L

m
ext

c











external force / unit length constant linear mass

Flexion only: z(x,t)



 at x = 0 : fixed position and angle

 at x = L : point force F + no torque

with boundary conditions
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Static deformations in Euler-Bernoulli model
Point F force at the end of the cantilever



 at x = 0 : fixed position and angle

 at x = L : point force F + no torque

with boundary conditions
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Angle at x = L for 

optical lever detection
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Static deformations in Euler-Bernoulli model
Point F force at the end of the cantilever
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Theoretical stiffness from Euler-Bernoulli model

 Rectangular cantilever
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 V-shaped cantilever

Sader, Rev. Sci. Instrum. 66, 4583 (1995)

 approximate expression:

correction lgeometrica 
2 3
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EDH
k

Parallel beams approximation

 no exact analytical expression

Expressions used by manufactors for cantilever stiffness estimation

Main error sources: thickness H (to the power 3), and Young modulus E



Theoretical stiffness from Euler-Bernoulli model
Correction when point force acts DL away from end 
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L = 300 µm, DL=10 µm 

→ 10% correction

constant angle part
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As if beam length was L-DL instead of L
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Theoretical stiffness from Euler-Bernoulli model
Influence of tilt angle q : from k0 to k and k*

s calibrated from slope of DV versus Dz* when pushing on hard surface
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Hutter, Langmuir 21, 2630 (2005)

tilt angle q = 11

2% correction

4% correction



Theoretical stiffness from Euler-Bernoulli model
Influence of tilt angle q: torque correction 
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Static deformations with boundary conditions
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Sphere of radius R:

replace D by R

and point torque
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Torque correction 

L = 300 µm, D=10 µm, tilt angle q = 11

→ 1% correction on k
→ 0.3% correction on Dj /Dz

Hutter, Langmuir 21, 2630 (2005); Edwards et al., J. Appl. Phys. 103, 064513 (2008)
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Calibration optical lever 

against hard surfaceDz
-Zpiezo> 0

q
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Vszz DDD qcos*

Calibration using static deformations: 
Cantilever against reference cantilever method

DL
F

  ***

3

zkzkzZ
LL

L
kF piezoref DDD









D


Gates et al., Rev. Sci. Instrum, 78, 086101(2007)
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Avantages:

 works for all type of cantilevers and probes

 direct measure of k and k*, ie stiffness of 

interest in experimental configuration

Main error sources: measurement of slope(s) (because of solid friction),

and position DL

Drawbacks:

 requires reference cantilever with kref ~ k0 

 requires mechanical contact (risk of damaging the probe)

 sensitive to position DL of the probe on the reference cantilever

DL

k0
kref

Calibration using static deformations: 
Cantilever against reference cantilever method
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n=1

n=2

n=3

n=4

First 4 normal modes fn(x)

Calibrations based on modes of oscillation:

Normal modes in Euler-Bernoulli model

 clamped at x = 0 ; free end at x = L

Boundary conditions
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Free cantilever: no external forces

tiexxz f )(),(~ 

a 4

Butt et al., Nanotechnol. 6, 1 (1995)

a must obey : cos(a + cosh(a = -1

Roots an (a1=1.875; a2=4.694…)

Normal spatial modes fn (x, an) form a basis set of fonctions in [0,L]



stiffness

n=1
n=2
n=3
n=4

First 4 normal modes fn(x)

Calibrations based on modes of oscillation: : 
From normal modes to simple harmonic oscillators

Decomposition on basis of normal modes
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Each mode of oscillation behaves as a simple harmonic oscillator (SHO)
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 Measure angular frequency 1 of 1st resonance

Calibrations based on modes of oscillation: 

Simple harmonic oscillator (SHO) method
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For a rectangular cantilever, in vacuum:

Sader et al., Rev. Sci. Instrum. 66, 3789 (1995)



 Measure angular frequency 1 of 1st resonance

Calibrations based on modes of oscillation: 

Simple harmonic oscillator (SHO) method
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5% variation of resonant

frequency from vacuum 

to atmospheric pressure

Sader et al., Rev. Sci. Instrum. 66, 3789 (1995)
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Main error sources:

mass mc

 sensitivity of resonant

frequency 1 to fluid loading

For a rectangular cantilever, in vacuum:



Calibrations based on modes of oscillation: 

Cleveland’s added mass method
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For a rectangular cantilever:

Cleveland et al., Rev. Sci. Instrum. 64, 403 (1993)



Calibrations based on modes of oscillation: 

Cleveland’s added mass method
Cleveland et al., Rev. Sci. Instrum. 64, 403 (1993)

Avantages:

 works for all type of cantilevers and probes

 independant of type and calibration of detection

 insensitive to fluid-loading effects when M >10 mc

Main error sources: mass M, and position DL

Drawbacks:

 requires micromanipulations

 post-mortem due to risk of damaging the probe

 sensitive to position DL of the added mass

Sader et al., Rev. Sci. Instrum. 66, 3789 (1995)Evaluated in:
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Calibrations based on modes of oscillation: 
Sader model for hydrodynamic load

When a cantilever is immersed in a fluid (viscosityhf and density rf)

 broadening of resonance due to viscous damping

 diminution of resonant frequency due to added mass by the fluid



Calibrations based on modes of oscillation: 
Sader model for hydrodynamic load

When a cantilever is immersed in a fluid (viscosityhf and density rf)

 broadening of resonance due to viscous damping

 diminution of resonant frequency due to added mass by the fluid

Sader, J. Appl. Phys 84, 64 (1998)

Hydrodynamic load
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Sader et al., J. Appl. Phys 97, 124903 (2005)



Calibrations based on modes of oscillation: 
Sader model for hydrodynamic load

Decomposition on basis of normal modes of oscillation
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Calibrations based on modes of oscillation: 
Hydrodynamic Sader method
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Sader et al., 

Rev. Sci. Instrum. 70, 3967 (1999)

0.1906 Imaginary part of the hydrodynamic function

 hf and rf tabulated

 1 and Q1 measured from damped SHO fit of 1st resonance peak

 L and W measured by optical microscopy

Rectangular cantilever, low damping limit (quality factor Q1 ≥ 10):



Calibrations based on modes of oscillation: 
Hydrodynamic Sader method
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Sader et al., 

Rev. Sci. Instrum. 70, 3967 (1999)

0.1906 Imaginary part of the hydrodynamic function

 hf and rf tabulated

 1 and Q1 measured from damped SHO fit of 1st resonance peak

 L and W measured by optical microscopy

Rectangular cantilever, low damping limit (quality factor Q1 ≥ 10): 

Avantages:

 fast, precise, easy -- online calibration on: 

http://www.ampc.ms.unimelb.edu.au/afm/theory.html

 independant of type and calibration of detection

Main error sources: width W, and quality factor Q1

Underestimates

k0 if presence of 

colloidal probe of 

diameter > W/2 



Calibrations based on modes of oscillation: 
Equipartition of energy and thermal noise PSD

Small dissipation (high Q): 

Modes of oscillation Zn are independant degrees of freedom

Total thermal noise of the cantilever

Butt et al., Nanotechnol. 6, 1 (1995)
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Calibrations based on modes of oscillation: 
Equipartition of energy and thermal noise PSD
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Butt et al., Nanotechnol. 6, 1 (1995)

For detection with optical lever: total thermal noise of DV
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Hutter, Langmuir 21, 2630 (2005)

Link with thermal noise PSD of signal DV :



Calibrations based on modes of oscillation: 
Thermal noise calibration

but in reality, finite integration range: 

thermal noise PSD only available around resonance because of 

background noise

So no direct access to mean square amplitudes               and 
2VD 2zD

Idea: 

measure k0 from integration of thermal noise PSD 

Hutter et al., Rev. Sci. Instrum. 64, 1868 (1993)



Calibrations based on modes of oscillation: 
Thermal noise calibration

Fluctuation dissipation theorem on amplitude of normal mode n
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Contribution of mode n to total thermal noise ?

Idea: 

measure k0 from integration of thermal noise PSD

but in reality, finite integration range: 

thermal noise PSD only available around resonance because of 

background noise

So no direct access to mean square amplitudes               and 
2VD 2zD



Calibrations based on modes of oscillation: 
Thermal noise calibration
SHO fit of resonance peak in thermal noise PSD of free cantilever:

 k0 , n and Qn
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≈ 0.97

pour n=1

≈ 0.817 pour n=1

 fast, precise, easy

 depends of calibration of detection

Error sources: error on fit parameters

+ error on s if optical lever technique

Butt et al., 

Nanotechnol. 6, 1 (1995)

Hutter, Langmuir 21, 2630 (2005)



Conclusion

Comparison of calibration methods for cantilever’s bending stiffness k0

Theoretical SHO Added mass
Hydro

Sader

Thermal 

noise

Cant. against

reference cant.

L,W, H, Erequires mc

1

M, DL

1

hf , rf

L, W,

1 , Q1

T, thermal 

noise PSD

+ s, q

for optical

lever

kref , DL, q 

+ slopes

Dsignal / Zpiezo

in contact

Main 

error

sources

H, E mc M, DL W, Q1
SHO fit,

s

kref , DL

+ slopes

Dsignal / Zpiezo

in contact

1 in 

fluid

Typical

uncertainty
10-30 %30-50 % 20-40 % 5-10 % 5 -10 % 10-30 %

can be reduced

by MEB pictures

to measure H



For example: 

- mapping of spatial modes along the cantilever from thermal noise

- calibration using electrostatic forces on metal-coated colloidal probes

Conclusion: to go further…

 Other calibration methods for cantilever’s bending stiffness k0

and variants…

 Calibration of torsional spring constant for lateral force  measurement

For example: Green et al., Rev. Sci. Instrum. 75, 1988 (2004)

Paolino et al., J. Appl. Phys. 106, 094313 (2009) and  HDR of L. Bellon

Chung et al., Rev. Sci. Instrum. 80, 065107 (2009)

 Influence of the position of the laser beam on the cantilever on the 

effective stiffness k and k* : mode dependent correction factor

In this course, laser beam assumed focused on point of application of the force
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